
Column Encrypted Description

id no The primary key of the entity (UUID)

username no A unique user identifying string

fullName no The full name of the user

serverComputedAuthenticationHash no
The Server Computed
Authentication Hash

masterKeyDerivationInformation no
A random salt and iteration count to
derive the Master Key

masterEncryptionKey yes The Master Encryption Key

itemEncryptionPublicKey no
The public part of the Item
Encryption Key Pair

itemEncryptionSecretKey yes
The private part of the Item
Encryption Key Pair

settings yes The user settings

deleted no Indicates if the user was deleted

modified no
The Unix timestamp of last
modification

created no The Unix timestamp of creation

Pass Butler documentation
Pass Butler is a modern password manager which provides a self-hosted cloud solution to
synchronize the sensible data between multiple devices securely and privacy compliant. All user
data is end-to-end (E2E) encrypted to ensure the data can't even read by the server administrator.
Additionally, Pass Butler offers a password item sharing, which means a user can grant or revoke
access to desired items to other users (e.g. to share Wi-Fi passwords in a team or family).

In this document, all the involved technologies and cryptographic concepts are documented on
technical level.

Model entities

User {#user}

Item {#item}

af://n0
af://n4
af://n5
af://n59

Column Encrypted Description

id no The primary key of the entity (UUID)

userId no The user ID of the creator / owner of the item

data yes
The actual sensible data of the item (username, password,
notes, etc.), see Item Data

deleted no Indicates if the item was deleted

modified no The Unix timestamp of last modification

created no The Unix timestamp of creation

Column Encrypted Description

title no The title of the item

username no The username of the item

password no The password of the item

url no The website URL of the item

notes no Some notes for the item

tags no A list of tags for the item

Column Encrypted Description

id no The primary key of the entity (UUID)

userId no The user ID that can use the authorization to access the item

itemId no The item ID to which was granted access to

itemKey yes The symmetric key to decrypt the item data

readOnly no Indicates if the authorization to access the item is read only

deleted no Indicates if the authorization was revoked

modified no The Unix timestamp of last modification

created no The Unix timestamp of creation

Item Data {#item-data}

Item Authorization {#item-authorization}

Security architecture
The Pass Butler security architecture is based on the following principles:

Usage of strong, modern cryptographic algorithms only
Usage of well-known cryptographic implementations (Java Security and JavaX Crypto)

af://n89
af://n119
af://n157

Unit test cryptographic code with official test vectors to ensure correct usage of the
cryptographic implementations
Never ever persist the Master Password nor the Master Key to disk (store it only temporarily
in memory for computations)

Cryptographic technology

The following cryptographic technology is used:

PBKDF2-SHA256 {#pbkdf2-sha256}

A key derivation algorithm that uses SHA-256. It needs a salt and an iteration count to slow down
computing (brute forcing).

AES-256-GCM {#aes-256-gcm}

A symmetric encryption algorithm with a key length of 256 bit in Galois/Counter mode (GCM) that
ensures not only the confidentiality but also the integrity of the data to protect against tampering
the encrypted data. A random initialization vector (IV) that must never be reused is needed for
operation. The algorithm is fast and suitable for all kinds of data amount.

RSA-2048-OAEP {#rsa-2048-oaep}

An asymmetric encryption algorithm with a key length of 2048 bit that consists of a public and a
private part. The public part allows to encrypt data, the private part allows to decrypt the data.
The algorithm is slow and only suitable for small data.

SecureRandom

The random number generator, which is used for generating cryptographic keys and initialization
vectors. Pass Butler uses the default constructor of java.security.SecureRandom which utilizes
/dev/urandom on Unix based systems. It is non-blocking and is capable to provide secure
cryptographic keys.

Cryptographic entities

Master Password {#master-password}

The one password that protects all other data. It should be long and complex because the
complete security architecture relies on it! The Master Password is stored in memory only
temporary for computing and is overridden afterwards immediately.

Master Key {#master-key}

The Master Key is a symmetric key for AES-256-GCM that is derived from the Master Password
with PBKDF2-SHA256 using a random salt and an iteration count stored in
User.masterKeyDerivationInformation . Like the Master Password, it is derived and stored in
memory only temporary for computing and is overridden afterwards immediately.

Master Encryption Key {#master-encryption-key}

The Master Key could be used directly to encrypt user data, but if the user wants to change its
Master Password, all encrypted data would have to be re-encrypted. This is a resource consuming
task and takes the risk of data corruption. To avoid this situation, the Master Encryption Key is
introduced:

af://n168
af://n170
af://n172
af://n174
af://n176
https://tersesystems.com/blog/2015/12/17/the-right-way-to-use-securerandom
af://n178
af://n179
af://n181
af://n183

It is a symmetric key for AES-256-GCM which is generated once and encrypts sensible data of the
user (e.g. the user settings). The Master Encryption Key is stored in the
User.masterEncryptionKey field and is itself encrypted with the Master Key. If the user wants to
change its Master Password now, only the same Master Encryption Key needs to be re-encrypted.

Item Key {#item-key}

For a normal password manager, it would be reasonable to encrypt the sensible Item Data of an
Item just with the Master Encryption Key. But because an item sharing functionality is featured, a
bit more complexity (and keys) must be introduced.

The Item Key is a symmetric key for AES-256-GCM which actually encrypts the Item Data.

Every user that have access to an Item has also an appropriate Item Authorization – this contains
a user ID, an item ID and the Item Key stored in the field ItemAuthorization.itemKey . It is itself
encrypted with the public part of the Item Encryption Key Pair of the user for whom the Item
Authorization is intended.

Item Encryption Key Pair {#item-encryption-key-pair}

The Item Encryption Key Pair is an asymmetric key pair for RSA-2048-OAEP which consists of a
public and a private part:

the public part (stored in User.itemEncryptionPublicKey field) is needed to be able to
share an item to another user (the Item Key of the Item desired to share is re-encrypted with
it)
the private part (stored in User.itemEncryptionSecretKey field) is needed for the other
user to decrypt the encrypted Item Key and access the Item Data of the shared Item. The
private part is itself encrypted with the Master Encryption Key.

Local Computed Authentication Hash {#local-computed-authentication-
hash}

The username and this hash are used to authenticate the client to the server. Because the Master
Password must never ever leave the local client to ensure E2E encryption, only a hash is sent to
the server to prove that the client knows it.

This Local Computed Authentication Hash is derived from the Master Password with PBKDF2-
SHA256 using the username as the salt and 100001 iterations (one iteration more than for Master
Key derivation to clearly distinguish between it).

Server Computed Authentication Hash {#server-computed-
authentication-hash}

The Local Computed Authentication Hash sent by the client could be used for direct comparison
to the known value. But this idea has a major problem: If an attacker gained access to the
database (e.g. through an old backup), he could directly use the included hashes to straight
forward authenticate as that users on the server without any more knowledge.

To avoid this “hash-is-the-password“ situation, the received Local Computed Authentication Hash
is hashed again with PBKDF2-SHA256 using the random salt and iteration count stored in
User.masterPasswordAuthenticationHash field. If the calculated hash matches the hash value
also stored in this field, the authentication is successful.

af://n186
af://n190
af://n197
af://n200

How does the item sharing work?

For example Alice and Bob living in a shared apartment, Bob wants to use the wireless internet
but does not know the Wi-Fi password yet. So Alice wants to share the item “Apartment Wi-Fi
Password“ to her roommate Bob.

1. Alice enters her Master Password and derives her Master Key
2. Alice decrypt its Master Encryption Key with the Master Key
3. Alice decrypt its private part of her Item Encryption Key Pair with the Master Encryption Key
4. Alice decrypt the Item Key in her Item Authorization of “Apartment Wi-Fi Password“ with the

private part of her Item Encryption Key Pair
5. Alice encrypt the Item Key with the public part of the Item Encryption Key Pair of Bob
6. Alice create a new Item Authorization with the item ID of “Apartment Wi-Fi Password“, the

user ID of Bob and the re-encrypted Item Key of previous step

Now Bob is able to access the “Apartment Wi-Fi Password“ with the following steps:

1. Bob enters his Master Password and derives his Master Key
2. Bob decrypt its Master Encryption Key with the Master Key
3. Bob decrypt its private part of his Item Encryption Key Pair with the Master Encryption Key
4. Bob decrypt the Item Key in his Item Authorization of “Apartment Wi-Fi Password“ with the

private part of his Item Encryption Key Pair
5. Bob decrypt the Item Data of “Apartment Wi-Fi Password“ with the decrypted Item Key and

can access the item

Now Bob thankfully can access the wireless network and enjoy his favorite series. And if the Wi-Fi
password is changed some time in the future, he automatically sees the updated password in
Pass Butler.

How does the server authentication work?

All normal requests to the server must be authenticated with a valid bearer token (JSON Web
Token / JWT). Only the token request must be authenticated with the username and the Local
Computed Authentication Hash.

The token authentication tackles two problems:

1. Sending a sensible long-time static secret (the Local Computed Authentication Hash) every
single request to the server (the server connection may be TLS encrypted, but this shouldn't
be the assumption) – instead only a short-time token is sent, which becomes totally
worthless after the short validity period

2. The authentication with username and the Local Computed Authentication Hash is a lot
slower because of the resource intense computing of the PBKDF2-SHA256 hashes – the
token validity check is very fast and cheap

The token request process works like the following:

1. The client requests a token by sending username and Local Computed Authentication Hash
to server

2. The server checks if the requested user is not deleted (User.deleted == 0) and calculates
the Server Computed Authentication Hash from the received Local Computed Authentication
Hash: If the calculated result matches the expected value, the server responds with a new
token with a validity of 1 hour

af://n203
af://n231

Later requests are only authenticated with the token. If the token is rejected by the server (e.g.
because it is expired or just invalid), the server responds with HTTP 401 error, so the client can
automatically try to request a new token.

Synchronization algorithm
All model entities are identified via UUID (no auto increment integer primary keys to avoid
conflicts between clients generating the same auto incremented ID on different devices). The up-
to-date state of a model entity is determined with the modified timestamp in the modified field.
Model entities are never really deleted in the database – instead they contain a deleted field –
this makes the detection of new/deleted state much more simple.

The following steps are executed for all model entities:

1. Load list of local entities
2. Load list of remote entities
3. Detect new local entities and insert them locally
4. Detect new remote entities and insert them remotely
5. Detect modified local entities (according to modified field) and update them locally
6. Detect modified remote entities (according to modified field) and update them remotely

af://n246

	Pass Butler documentation
	Model entities
	User {#user}
	Item {#item}
	Item Data {#item-data}
	Item Authorization {#item-authorization}

	Security architecture
	Cryptographic technology
	PBKDF2-SHA256 {#pbkdf2-sha256}
	AES-256-GCM {#aes-256-gcm}
	RSA-2048-OAEP {#rsa-2048-oaep}
	SecureRandom

	Cryptographic entities
	Master Password {#master-password}
	Master Key {#master-key}
	Master Encryption Key {#master-encryption-key}
	Item Key {#item-key}
	Item Encryption Key Pair {#item-encryption-key-pair}
	Local Computed Authentication Hash {#local-computed-authentication-hash}
	Server Computed Authentication Hash {#server-computed-authentication-hash}

	How does the item sharing work?
	How does the server authentication work?

	Synchronization algorithm

